p.2 ~ Collaboration takes industry to new technical highs, greater depths

Since its inception in 1991, DeepStar has served as an incubator for collaborative development of technologies that enhance deepwater exploration, drilling, and production. DeepStar's approach to technical collaboration has delivered advances across the deepwater E&P spectrum, from reservoir appraisal, ultra-deepwater drilling and completions, flow assurance, subsea processing solutions to floating structures and life extension. Some of the key research initiatives under way in its Phase XII development are described.

Displaying 2/2 Page 1, 2
View Article as Single page

Floating systems research

Recognizing the industry need for improved design and maintenance of floating platforms, the Floating Facilities Committee has a number of research initiatives in Phase XII. For aging floating infrastructure, a project is developing the initial framework for a new continuing service guide for the industry, which draws upon existing industry guidance and incorporates the service planning and implementation experience of subject matter experts. Another project focused on better integrity management of mooring systems is investigating various types of corrosion phenomena found on mooring chains, and then surveying and assessing possible approaches and technologies to mitigate these corrosion processes.

Other research projects aim to improve the design and field life of risers and tubulars. For example, a gap assessment has started to identify critical areas for development of steel lazy wave risers (SLWRs) as a robust solution to handle harsh environments and high vessel motions. The project will also validate global performance of the SLWR to establish consistent design practices and validate design assumptions.

Another project looks to develop a next-generation computational approach for detailed analysis of flexible risers. Specifically, the research will validate an advanced method for flexible riser simulations that is capable of incorporating detailed finite element models into large-scale global, fully nonlinear dynamic simulations. It will also directly recover armor stress-time histories while maintaining execution speeds of standard riser dynamic analysis software packages.

Two projects are under way for the development of riser and tubular systems for ultra-deepwater applications. The first is a continuation of development work for flexible pipe and riser packages rated for 20,000 psi. A selected design, which was developed in previous phases, will be manufactured and tested for 20,000-psi design pressures. The second project focuses on developing and demonstrating the reliable operation of a 20,000-psi rated tubular based on the use of a PEEK and carbon fiber composite material.

Addressing industry needs

As with previous phases of research, DeepStar's Phase XII projects are focused on the ultimate goal of helping the offshore E&P industry maximize the tremendous resource potential contained within the world's deep- and ultra-deepwater basins. Many of the research projects highlighted above, plus the additional ongoing research being conducted in drilling, completions and metocean criteria, will likely continue beyond 2016 to further stages of research work or in the development of industry guidelines and standards through organizations such as the American Petroleum Institute.

In this manner, DeepStar's research efforts keep moving from the laboratory to real-world field practice, and culminate in commercially viable technologies that continually advance the deepwater industry to new successes in deeper, more remote, and technically complex offshore environments.

Displaying 2/2 Page 1, 2
View Article as Single page

More in Home